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Abstract

This paper gives a literature review of choosing tun-

ing parameters for ridge regression and lasso. These

regularized regressions introduce a little bias in re-

turn for a considerable decrease in the variance of the

predicted values, thus increasing prediction accuracy.

We can use AIC or BIC to select the tuning param-

eter for linear predictive models. However, for gen-

eral predictive models, cross-validation and bootstrap

work better because they directly estimate prediction

error. Though, cross-validation is more widely used

than bootstrap. An empirical example is employed to

illustrate how cross-validated lasso works. It shows

that lasso may solve the multicollinearity problem.
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1 INTRODUCTION

The method of least squares, which
was invented in early 1800’s (see [18]),
has been the power horse of mod-
ern statistical analysis. Its merit in-
cludes the intuitive rationale of “best
fit” of the sample regression function
to a given sample data set and the
closed-form estimator that have several
desirable statistical properties. When
the classical linear regression model
(CLRM) assumptions are satisfied, the
least squares estimator is the minimum
variance linear unbiased estimator of
the population parameter vector. It
is also consistent in large, well-behaved
data sets and is asymptotically normal
as a consequence of the central limit
theorem (see [10]). Its asymptotic nor-
mality allows hypothesis testing and in-
terval estimation in statistical inference.
The least squares method has received
various extensions which are applied
when the CLRM assumptions are un-
tenable.

Since the least squares coefficient
estimates are never zero, independent
variable selection is based solely on the
classical Neyman-Pearson null hypoth-
esis testing procedure. This methodol-
ogy has, however, become invalid fol-
lowing the conclusion of the American
Statistical Association (ASA) in March
2019 that a declaration of “statistical
(in)significance” is now meaningless (see
[22]). If the number of explanatory vari-
ables is greater than the sample size, the
least squares fails to produce a unique
solution. In addition, the least squares
estimate often has low bias but large
variance due to multicollinearity, which

can deteriorate prediction accuracy as
measured in terms of the mean squared
error (see [13]).

By shrinking the values of the re-
gression coefficients, regularized ver-
sions of the least squares introduce a lit-
tle bias but might lead to a substantial
decrease in the variance of the predicted
values, hence improving the overall pre-
diction accuracy. A least squares regres-
sion model subject to an L2-norm con-
straint of the parameter vector is called
ridge regression, whereas a model sub-
ject to an L1-norm constraint is called
lasso (least absolute shrinkage and se-
lection operator). One of the key differ-
ences between ridge regression and lasso
is that in ridge regression, as the con-
straint gets tighter, all coefficients are
reduced but remain non-zero, while in
lasso, imposing a tighter constraint will
cause some coefficients equal to zero.
This is an advantage of lasso in vari-
able selection as the classical hypothesis
testing procedure no longer works.

An issue for regularized regression is
how much constraint should be placed
on the coefficient vector. The amount of
regularization is controlled by the tun-
ing parameter, so it is crucial to choose
a good value of the tuning parameter.
Because each tuning parameter is as-
sociated with a different fitted model,
even with a different set of independent
variables in lasso, the choice of its value
is also referred to as model selection.
It however depends on our purposes of
prediction or causality analysis. This
paper gives a literature review of choos-
ing the tuning parameter for the for-
mer purpose. Some information crite-
ria such as Akaike Information Criteria
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(AIC) and Bayesian Information Crite-
ria (BIC), and Mallows’s Cp statistic,
which are used to assess the fit of a re-
gression model, can work because their
training error is already adjusted to es-
timate prediction error. But their usage
is restricted to estimates that are linear
in their parameters. Cross-validation
and bootstrap methods, which are di-
rect estimates of extra-sample error, are
considered better ways to choose the
tuning parameter.

The paper is structured as follows.
Section 2 introduces ridge regression
and lasso. Section 3 discusses AIC, BIC,
and Mallows’s Cp statistic as selection
criteria. Sections 4 and 5 present cross-
validation and bootstrap methods, re-
spectively. Section 6 gives an empirical
example using cross-validated lasso with
Stata commands explained in the Ap-
pendix. Conclusions follow in Section
7.

2 RIDGE REGRESSION AND
LASSO

In an unconstrained least squares es-
timation, multicollinearity can cause co-
efficient estimates to explode and hence
susceptible to very high variance. This
problem is mitigated when a size con-
straint is imposed on the coefficients.
Ridge regression (see [14]) uses the
same least squares objective function,
but adds an L2-norm constraint on
the magnitude of regression coefficients.
The minimization problem of penalized
residual sum of squares is

min
β

(y −Xβ)T (y −Xβ), (1)

subject to βTβ ≤ t,

where t is the size constraint on the pa-
rameters. The ridge estimator can be
equivalently written as

β̂ridge = argmin
β

[
(y −Xβ)T (y −Xβ)

+ λβTβ
]
. (2)

Lagrangian duality implies that there
is a one-to-one correspondence between
the constrained optimization (1) and
the Lagrangian form (2). Specifically,
there is a corresponding value of λ for
each value of t such that both (1) and
(2) yield the same solution. The solu-
tion is

β̂ridge =
(
XTX + λI

)−1
XTy, (3)

where I is the identity matrix, the La-
grange multiplier λ is nonnegative and
called a tuning or shrinkage parame-
ter because it controls the amount of
shrinkage. A larger λ indicates a greater
amount of shrinkage. When λ = 0,
there is no shrinkage and we obtain the
least squares solution. As λ increases,
the coefficients are shrunk toward zero.

Since measurement scale of covari-
ates X affects ridge estimates, we
normally standardize independent vari-
ables before solving (1). In so doing,
the intercept β0 is not included in the
shrinkage. The solution (3) is again a
linear function of y. It adds a posi-
tive constant λ to the diagonal of XTX
before inversion. When the number of
parameters is greater than the sample
size, XTX is singular and the least
squares solution is not unique. On the
contrary, (XTX + λI) is always of full
rank, hence the ridge solution is unique.
Hoerl and Kennard [14] considered it
the original motivation for ridge regres-
sion. In addition, when the number
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of parameters equals the sample size,
least squares regression fits data “too
well”, i.e., there is lack of generaliza-
tion. Ridge regression does not overfit
data with a proper value of λ. How-
ever, the main drawback of ridge regres-
sion is that its estimated coefficients,
although being shrunk, are never zero.
It makes subset selection difficult espe-
cially when the classical hypothesis test-
ing procedure is not valid. It is nicely
settled by using a different penalty on
the coefficients in an alternative version
of shrinkage regression named lasso.

Least absolute shrinkage and selec-
tion operator, or lasso for short, was de-
veloped by Tibshirani [20]. Lasso forces
the sum of the absolute values of the
regression coefficients to be less than a
fixed value t. Its objective function is

min
β

N∑
i=1

(
yi − β0 −

p∑
j=1

xijβj

)2

(4)

subject to

p∑
j=1

|βj| ≤ t.

The lasso problem can be rewritten in
the Lagrangian form

β̂lasso = argmin
β

{ N∑
i=1

(
yi − β0

−
p∑
j=1

xijβj
)2

+ λ

p∑
j=1

|βj|
}
. (5)

Like in ridge regression, explanatory
variables are standardized, thus exclud-
ing the constant β0 from (5).

Lasso differs from ridge regression
in that it uses an L1-norm instead of
an L2-norm. The L1 penalty makes

the lasso solution nonlinear in y, and
there is no closed form expression as in
ridge regression. Since the constraint
region is still convex, lasso possesses
all strengths of ridge regression. The
lasso solution is unique and lasso pro-
vides a better fit in high dimensional
data where the number of features can
exceed the number of observations. Be-
cause the constraint region is diamond-
shaped, a sufficiently large value of λ
is likely to pick a solution that lies at
a corner point of that region. As a re-
sult, we have a sparse solution in which
some coefficients are set exactly equal
to zero. In other words, lasso performs
a straightforward model selection. This
distinct advantage of lasso over ridge re-
gression explains its popularity.

Nevertheless, it should be noted that
when lasso is used in building models
for prediction, it does not necessarily
choose the independent variables that
belong in the true model, but it chooses
a set of variables that are correlated
with them. That a potential variable
is omitted does not tell whether it be-
longs in the true model or not but im-
plies that it is correlated with variables
that are already selected. Those vari-
ables are included because they are use-
ful for prediction which is our interest.
The main parameter that a researcher
has to choose is the tuning parameter
λ.

3 MALLOWS’S CP STATISTIC, AIC,
AND BIC

To understand why Mallows’s Cp
statistic, AIC, and BIC can be used

a This part is based on Hastie et al. [12].
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as selection criteria for λ, let us ex-
amine the optimism of the training
error ratea. Suppose we have a re-
sponse y, and a vector of regressors
x, and a prediction model f̂(x) that
is estimated from a training set T =
{(y1,x1), (y2,x2), . . . , (yN ,xN)}. The
loss function that measures squared er-
rors between y and f̂(x) is

L(y, f̂(x)) = (y − f̂(x))2. (6)

Generalization error, also referred to as
test error, of the model f̂ given the fixed
training set T is

ErrT = Ey′,x′ [L(y′, f̂(x′))|T ], (7)

where (y′,x′) is a new test data point
that is drawn from the joint distribu-
tion of the response and regressors. The
expected test error (or expected predic-
tion error) is averaged over training sets
T

Err = ETEy′,x′ [L(y′, f̂(x′))|T ]. (8)

Our goal is to estimate conditional er-
ror ErrT , but in most cases it is easier
to estimate the expected error Err.

Training error is the average loss in
the training set

err =
1

N

N∑
i=1

L(yi, f̂(xi)). (9)

Training error is not a good estimate of
the test error ErrT . When the model
gets more and more complex, it is likely
to extract some of the residual varia-
tion which should be considered noise
as if that variation represents certain
underlying structures. In other words,
the model begins to“memorize”training

data rather than“learning”to generalize
from a trend. Therefore, the model can
predict the training data perfectly, but
typically fails severely on unseen data.
Overfitting would cause the training er-
ror to decrease consistently and to be
less than the true test error ErrT . Or
err is an optimistic estimate of ErrT .

Equation (7) indicates that ErrT
can be understood as extra-sample error
since the test regressor vector x′ may
differ from the training regressor vector
x. We can use the in-sample error Errin
instead to illustrate the optimism in err

Errin =
1

N

N∑
i=1

Ey′ [L(y′i, f̂(xi))|T ],

(10)
where y′i denotes new response values
at each training point xi, i = 1, . . . , N .
The optimism is defined as the differ-
ence between Errin and err

op = Errin − err, (11)

which is normally positive. With the
fixed training set, the average optimism
is computed over the response values in
the training set

ω = Ey(op). (12)

For squared-error loss functions

ω =
2

N

N∑
i=1

Cov(yi, ŷi). (13)

This equation implies that err under-
estimates the true error by an amount
that depends on how closely yi is corre-
lated with its own predicted value. The
tighter the model fits the training data,
the greater the covariance will be, thus
exaggerating the optimism of err. For a
linear model of the form y = f(x) + ε
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with d independent variables, it can be
shown that Cov(yi, ŷi) = dσ2

ε .
From equations (11)–(13), we obtain

the following relation for a linear model

Ey (Errin) = Ey (err) + 2
d

N
σ2
ε . (14)

The optimism increases with the num-
ber of regressors and decreases with the
training sample size. Equation (14) sug-
gests that we can estimate the optimism
and add it to the training error err to
estimate prediction error. This is how
Mallows’s Cp, AIC, and BIC work.

The Cp statistic for d regressors in a
linear model is defined as

Cp = err + 2
d

N
σ̂2
ε , (15)

where σ̂2
ε is an estimate of the noise vari-

ance in a model containing all regres-
sors. The training error is adjusted by
a factor proportional to the number of
regressors.

The Akaike Information Criterion
(AIC), formulated by Akaike [2], is often
used when the loss function takes the
form of a log-likelihood. As N →∞, it
holds asymptotically that

−2E [log Prθ̂(y)] ≈ − 2

N
E
[
log(L̂)

]
+2

d

N
,

(16)
where Prθ(y) is a set of densities for y,
θ̂ is the maximum likelihood estimate
of θ, and L̂ is the maximum value of
the likelihood function for the model.

Thus log(L̂) =
N∑
i=1

log Prθ̂(yi). For a

Gaussian model with σ2
ε = σ̂2

ε assumed

known, −2log(L̂) =
N

σ2
ε

err. AIC defined

as

AIC = −2log(L̂)+2d =
N

σ2ε

(
err + 2

d

N
σ2ε

)
(17)

is equivalent to Cp. Given a set of lin-
ear models fλ(x) indexed by a tuning
parameterb λ, with associated training
error err(λ) and d(λ) parameters, we
choose the tuning parameter λ̂AIC that
minimizes

AIC(λ) =
N

σ2
ε

(
err(λ) + 2

d(λ)

N
σ2
ε

)
.

(18)
The Bayesian Information Criterion

(BIC), also known as the Schwarz In-
formation Criterion (see [17]), is similar
to AIC, but with a different penalty for
the number of parameters

BIC = −2log(L̂) + (logN)d

=
N

σ2
ε

[
err + (logN)

d

N
σ2
ε

]
, (19)

where the factor 2 is replaced by logN .
For N > e2, BIC penalizes complex
models more heavily than AIC. Like
AIC, the chosen model has the tuning
parameter that minimizes BIC.

It is not clear whether AIC or BIC
performs better, though the latter crite-
rion is asymptotically consistent. Burn-
ham and Anderson [5], Vrieze [21], and
Aho et al. [1] show that given a set
of candidate models that includes the
“true model”, as N → ∞, BIC will se-
lect the “true model” with probability 1,
but AIC tends to choose more complex
models. However, when N is small, BIC
often selects too simple models. For

b Although λ is a continuous parameter, it is usually not feasible to consider all possible values
of λ. So we normally discretize its range into a discrete set {λ1, . . . , λM}.
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nonlinear and complex models, d should
be replaced by some measure of model
complexity.

4 CROSS-VALIDATION

Cross-validation is probably the
most intuitive and frequently used way
to estimate prediction error. It directly
estimates the expected extra-sample er-
ror Err = E[L(y, f̂(x))] where the
model f̂(x) is applied to an independent
test set that is not used in estimating
the model itself (see [19]). If the data
are rich, we can reserve a test set and
use it only to assess the predictive abil-
ity of the model. Because this is often
not the case, cross-validation involves
partitioning the available data into sub-
sets, fitting the model on one subset,
and testing it on the other subset.

The simplest kind of cross-validation
is holdout method. The data are ran-
domly divided into two sets, called the
training set and the test set. The test
set is typically smaller than the train-
ing set. Estimation methods optimize
model parameters subject to different
values of the tuning parameter λ such
that regularized models fit the training
set as well as possible. Then the models
are asked to predict the response val-
ues for the data in the test set. The
test errors are used to choose the best
model. This evaluation method may be
misleading because the test errors can
have high variance, depending on how
the division is made.

One way to improve over the hold-
out method is K-fold cross-validation.
The data are split into K sets or “folds”
of roughly equal size, commonly K = 5

or K = 10. The holdout method is re-
peated K times. Each time, a kth set is
retained as the test set, and the remain-
ing K − 1 sets form the training set to
which we fit the model f̂−k(x) which is
then validated on all of the observations
in the kth set. The cross-validation esti-
mate of prediction error is the averaged
error across all K trials

CV(f̂) =
1

N

N∑
i=1

(yi − f̂−k(xi))2. (20)

Given a set of models fλ(x) indexed
by a tuning parameter λ, we find the
tuning parameter λ̂CV that minimizes

CV(f̂λ) =
1

N

N∑
i=1

(yi − f̂−kλ (xi))
2. (21)

The advantage of this method is
that how the data are divided does not
matter much. Each observation be-
longs to a test set exactly once, and
to a training set K − 1 times. When
K = 5 or 10, the cross-validation es-
timate has low variance, but is poten-
tially an upward biased estimate of the
expected prediction error Err if for each
fold there are not sufficient training
data to fit a good model. When K =
N , called leave-one-out cross-validation,
the cross-validation estimate is approxi-
mately unbiased for the expected pre-
diction error Err, but can have high
variance because the N training sets are
almost identical. In addition, the com-
putational task is rather heavy with N
trials. Breiman and Spector [4] and
Kohavi [16] recommended 5- or 10-fold
cross-validation.
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Since the selected λ̂CV that min-
imizes the cross-validation estimate
comes from a random division of the
data, its position may be unstable.
Small changes in the random-number
seed may cause large changes in λ̂CV.
Breiman et al. [3] suggested that the
one standard-error rule should be used
to reduce the instability and to choose
the most parsimonious model whose er-
ror is within one standard error above
the error of the minimum.

Another way to secure a more par-
simonious model than that based on
λ̂CV is adaptive lasso which was intro-
duced by Zou [23]. It is a sequence
of cross-validated lassos. After using
cross-validation to select a set of non-
zero covariates, one constructs coeffi-
cient level weights for selected covari-

ates of the form wj =
1

|β̂j|δ
, where δ

is the power to which the weights are
raised. Each step chooses either the
same covariates chosen by the previous
step or a smaller set of them.

5 BOOTSTRAP

The bootstrap was introduced by
Efron [6] and was fully developed by
Efron and Tibshirani [8]. The boot-
strap relies on random sampling with
replacement to estimate measures of ac-
curacy of an estimator such as its bias,
variance, prediction error, etc. Given a
training set of size N , a bootstrap sam-
ple is created by drawing N observa-
tions randomly with replacement from
the training set. This is done B times,
yielding B bootstrap samples. For our
current purpose, one approach is to fit

the model to each of the bootstrap sam-
ples and calculate the predicted val-
ues for all observations in the original
training set. Let f̂ b(x) be the fitted
model to the bth bootstrap sample, and
f̂ b(xi), i = 1, . . . , N be the predicted
values. The simple bootstrap (SB) esti-
mator of the expected prediction error
(see [8]) is

ÊrrSB =
1

B

1

N

B∑
b=1

N∑
i=1

L(yi, f̂
b(xi)).

(22)
But this is not a good estimator because
there are overlapping data between the
bootstrap samples (which serve as the
training sets) and the original train-
ing set (which serves as the test set).
We can improve it by mimicking cross-
validation in which the training and test
sets do not have observations in com-
mon.

For each observation, we just keep
its predicted values from bootstrap sam-
ples that do not include that observa-
tion. The leave-one-out bootstrap es-
timate of the expected prediction error
(see [7]) is

Êrr(1) =
1

N

N∑
i=1

1

|C−i|
∑
b∈C−i

L(yi, f̂
b(xi)),

(23)
where C−i is the set of bootstrap sam-
ples that do not include observaton
i, and |C−i| is the number of these
samples. The leave-one-out bootstrap
avoids the overfitting problem of ÊrrSB
but is subject to an upward bias due
to the distance between the observation
i and these bootstrap samples in terms
of probability (see [7]). As the observa-
tion i has zero probability of belonging
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to the bootstrap samples which act as
the training sets, we are testing on a set
(which includes only observation i) far
from the training ones.

Under random sampling with re-
placement, the probability of an obser-
vation not being chosen in a bootstrap

sample is

(
1− 1

N

)N
≈ e−1 ≈ 0.368.

The probability of an observation being
chosen at least once in a bootstrap sam-

ple is 1 −
(

1− 1

N

)N
≈ 0.632. There-

fore, the effective number of distinct ob-
servations contributing to a bootstrap
replicate is on average approximately
0.632 ·N . Efron [7] showed that:

Ex [Err− err] ≈ 0.632·Ex
[
Êrr(1) − err

]
.

(24)
The 0.632 estimator is

Êrr(0.632) = 0.368 · err + 0.632 · Êrr(1).
(25)

It can be understood as a compromise
between the training error err, which
has a downward bias, and the leave-one-
out bootstrap estimator. However, the
0.632 estimator does not work well for
over-trained binary classifiers (see [4],
[9]).

6 AN EMPIRICAL EXAMPLE

In a study of using smoothing splines
to refine explanatory modeling, Le [15]

revised the housing value equation in
Harrison and Rubinfeld [11], who uti-
lized data for 506 census tracts in the
Boston Standard Metropolitan Statisti-
cal Area (SMSA) in 1970. Variables are
defined in Table 1. House prices are
certainly determined by house charac-
teristics such as number of rooms, year
of construction, property tax rate, dis-
tance to employment centers, and index
of accessibility to radial highways. Al-
though the neighborhood affects house
prices, we do not know for sure which
attributes influence property prices and
whether they have separate or joint im-
pacts. In stead of using p-values to se-
lect neighborhood covariates and inter-
action terms among house and neigh-
borhood attributes, we now use cross-
validated lasso with one standard-error
rule to choose the tuning parameter λ
and its associated predictors.

Following Le [15], we create a
dummy variable, Tax600 which equals 1
for 137 tracts having exceptionally high
tax rates exceeding $600 per $10,000
and equals 0 otherwise. Stata 16 has
built-in commands that make it easy to
run lasso. Commands are shown in the
Appendix. The one standard-error rule
selects λ̂SE = 0.0025553. The plot of the
cross-validation function shows that λ̂SE
is marginally higher than λ̂CV, but the
model becomes much sparser as forty
variables are removed.
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The penalized coefficients of the
twenty five selected covariates are
presented in the fourth column of
Table 2. Although our purpose is
using lasso for prediction, it re-
sults have some interesting implica-
tions for inference. Variables Room2,
Ln(Distance), Highway, Ln(Tax),
Tax600, Crime2, Room×Lowstatus,
Highway×Lowstatus have the same
signs as in Le’s (2018) model. However,
the Age variable now has an expect-
edly negative impact on house prices.
If we run OLS on those twenty five
lasso-selected variables, the Age vari-
able is significant. It seems that lasso
helps solve the multicollinearity prob-
lem since it gives the “right” sign to the
Age coefficient.

7 CONCLUSION

Ridge regression and lasso have be-
come popular because they can keep
coefficient estimates from blowing up
due to multicollinearity, introduce a lit-
tle bias in return for a considerable

decrease in the variance of the pre-
dicted values, thus increasing predic-
tion accuracy. In addition, they provide
unique solutions for high-dimensional
data. However, while ridge-estimated
coefficients, although being shrunk, are
never zero, lasso sets some coefficients
exactly equal to zero, thus gaining more
popularity.

It is important to choose an appro-
priate value of the tuning parameter
which governs the amount of penalty
placed on the coefficient vector. We can
use AIC or BIC to select λ for linear
predictive models. BIC works better for
very large sample sizes, but often picks
up too simple models for small sam-
ples. Cross-validation is the simplest
and most widely used method to di-
rectly estimate prediction error for gen-
eral models. Five- or ten-fold cross-
validation is recommended as they have
low variance and relatively low bias in
large training sets. Using the same tech-
nique in cross-validation and some mod-
ification, the 0.632 bootstrap estimator
can work well in “light fitting” cases.
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APPENDIX

This section presents commands in Stata 16 to run lasso with Harrison and
Rubinfeld’s [11] data. First of all, we create interaction terms among variables rm,
age, lndis, rad, lntax, Tax600, ptratio, black, lstat, crim, zn, indus, chas,
and nox.

We put variables rm, age, lndis, rad, lntax, Tax600 in parentheses to make
sure that they are in the model regardless of whether lasso wants to select them
or not. The selection(cv, serule) option specifies the one standard-error rule
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Table 2. Housing Value Models

HR’s (1978) Modela Le’s (2018) Model Lasso Model
Constant 4.558 4.595 4.5616
Room2 0.0063 0.0231 0.0261
Age 0.0001 0.0052 -0.0012
Ln(Distance) -0.1913 -0.2382 -0.2913
Ln(Highway) 0.0957
Highway 0.0139 0.0462
Tax -0.0004
Ln(Tax) -0.1963 -0.1893
Tax600 -0.3011 -0.1671
Pupil/Teacher -0.0311 -0.0316
(Black - 0.63)2 0.3637 0.1240
Ln(Lowstatus) -0.3712
Lowstatus 0.0547
Crime -0.0119 -0.0225
Crime2 0.0002 0.0001
Zoning 0.0001 0.0004
Industry 0.0002 -0.0074
Charles 0.0914 0.0474
Nox2 -0.6380 -0.7763
Room×Age -0.0009
Room×Lowstatus -0.0118 -0.0040
Highway×Lowstatus -0.0012 -0.0006
Highway×Industry 0.0019
Room×Highway -0.0027
Room×Pupil/Teacher -0.0050
Room×(Black - 0.63)2 0.0605
Room×Zoning 0.00002
Room×Nox -0.1321
Ln(Distance)×Lowstatus 0.0056
Ln(Distance)×Crime -0.0041
Ln(Distance)×Charles 0.0217
Highway×Zoning -0.000003
Pupil/Teacher×Zoning 0.0001
(Black - 0.63)2×Crime -0.0158
(Black - 0.63)2×Industry 0.0036
Crime×Charles 0.0361
Crime×Nox -0.0143
Zoning×Industry -0.0002
Charles×Nox -0.0317
R2 0.806 0.855 0.861

a Results are slightly different from those in Harrison and Rubinfeld (1978).

Source: Author’s calculation.
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cross-validation to select λ. In addition, we set the rseed() option for repro-
ducibility.
. lasso linear lnmedv (rm2 age lndis rad lntax tax600) ptratio black lstat

> crim crim2 zn indus chas nox2 rmage rmlndis rmrad rmlntax rmtax600

> rmptratio rmblack rmlstat rmcrim rmzn rmindus rmchas rmnox agelndis agerad

> agelntax agetax600 ageptratio ageblack agelstat agecrim agezn ageindus

> agechas agenox lndisrad lndislntax lndistax600 lndisptratio lndisblack

> lndislstat lndiscrim lndiszn lndisindus lndischas lndisnox radlntax

> radtax600 radptratio radblack radlstat radcrim radzn radindus radchas

> radnox ptratioblack ptratiolstat ptratiocrim ptratiozn ptratioindus

> ptratiochas ptrationox blacklstat blackcrim blackzn blackindus blackchas

> blacknox lstatcrim lstatzn lstatindus lstatchas lstatnox crimzn crimin-

dus

> crimchas crimnox znindus znchas znnox induschas indusnox chasnox,

> selection(cv, serule) rseed(12345) 10-fold cross-validation with 100 lambdas
...
Grid value 1: lambda = .0962052 no. of nonzero coef. = 6
Folds: 1...5....10 CVF = .067413
(output omitted)
Grid value 78: lambda = .0000745 no. of nonzero coef. = 73
Folds: 1...5....10 CVF = .0224233
... cross-validation complete ... minimum found
Lasso linear model No. of obs = 506

No. of covariates = 89
Selection: Cross-validation one s.e. rule No. of CV folds = 10

No. of Out-of- CV mean
nonzero sample prediction

ID Description lambda coef. R-squared error

1 first lambda .0962052 6 0.5957 .067413
39 lambda before .0028044 23 0.8229 .0295269

* 40 selected lambda .0025553 25 0.8244 .0292789
41 lambda after .0023283 25 0.8257 .0290579
78 last lambda .0000745 73 0.8655 .0224233

* lambda selected by cross-validation one s.e. rule.

We plot the CV function with the seline option that shows the minimum cross-
validation λ̂CV and the λ̂SE selected by the one standard-error rule.
. cvplot, seline
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Then, we list the penalized coefficients of the unstandardized variables.
. lassocoef, display(coef, penalized)

active

rm2 .0261342
age -.0011676

lndis -.2913293
rad .0462094

lntax -.1893063
tax600 -.1670989
crim2 .0000688
rmrad -.0027385

rmptratio -.0050196
rmblack .0604683
rmlstat -.0039817

rmzn .0000232
rmnox -.1320919

lndislstat .0055954
lndiscrim -.0041265
lndischas .0217131
radlstat -.0006211

radzn -3.12e-06
ptratiozn .0000577
blackcrim -.0158256

blackindus .0035727
crimchas .0360905
crimnox -.0143211
znindus -.0002177
chasnox -.03174

cons 4.561571

Legend:

b - base level

e - empty cell

o - omitted
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